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Several real-world classification problems are example-dependent cost-sensitive in nature, where the
costs due to misclassification vary between examples. However, standard classification methods do
not take these costs into account, and assume a constant cost of misclassification errors.
State-of-the-art example-dependent cost-sensitive techniques only introduce the cost to the algorithm,
either before or after training, therefore, leaving opportunities to investigate the potential impact of algo-
rithms that take into account the real financial example-dependent costs during an algorithm training. In
this paper, we propose an example-dependent cost-sensitive decision tree algorithm, by incorporating
the different example-dependent costs into a new cost-based impurity measure and a new cost-based
pruning criteria. Then, using three different databases, from three real-world applications: credit card
fraud detection, credit scoring and direct marketing, we evaluate the proposed method. The results show
that the proposed algorithm is the best performing method for all databases. Furthermore, when com-
pared against a standard decision tree, our method builds significantly smaller trees in only a fifth of
the time, while having a superior performance measured by cost savings, leading to a method that not
only has more business-oriented results, but also a method that creates simpler models that are easier
to analyze.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Classification, in the context of machine learning, deals with the
problem of predicting the class of a set of examples given their fea-
tures. Traditionally, classification methods aim at minimizing the
misclassification of examples, in which an example is misclassified
if the predicted class is different from the true class. Such a tradi-
tional framework assumes that all misclassification errors carry
the same cost. This is not the case in many real-world applications.
Methods that use different misclassification costs are known as
cost-sensitive classifiers. Typical cost-sensitive approaches assume
a constant cost for each type of error, in the sense that, the cost
depends on the class and is the same among examples (Elkan,
2001; Kim, Choi, Kim, & Suh, 2012). Although, this
class-dependent approach is not realistic in many real-world appli-
cations, for example in credit card fraud detection, failing to detect
a fraudulent transaction may have an economical impact from a
few to thousands of Euros, depending on the particular transaction
and card holder (Sahin, Bulkan, & Duman, 2013). In churn model-
ing, a model is used for predicting which customers are more likely
to abandon a service provider. In this context, failing to identify a
profitable or unprofitable churner have a significant different
financial impact (Glady, Baesens, & Croux, 2009). Similarly, in
direct marketing, wrongly predicting that a customer will not
accept an offer when in fact he will, has a different impact than
the other way around (Zadrozny, Langford, & Abe, 2003). Also in
credit scoring, where declining good customers has a non constant
impact since not all customers generate the same profit
(Verbraken, Bravo, Weber, & Baesens, 2014). Lastly, in the case of
intrusion detection, classifying a benign connection as malicious
have a different cost than when a malicious connection is accepted
(Ma, Saul, Savage, & Voelker, 2011).

Methods that use different misclassification costs are known as
cost-sensitive classifiers. In particular we are interested in meth-
ods that are example-dependent cost-sensitive, in the sense that
the costs vary among examples and not only among classes
(Elkan, 2001). However, the literature on example-dependent
cost-sensitive methods is limited, mostly because there is a lack
of publicly available datasets that fit the problem (Aodha &
Brostow, 2013). Example-dependent cost-sensitive classification
methods can be grouped according to the step where the costs
are introduced into the system. Either the costs are introduced
prior to the training of the algorithm, after the training or during
training (Wang, 2013). In Fig. 1, the different algorithms are
grouped according to the stage in a classification system where
they are used.
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Fig. 1. Different example-dependent cost-sensitive algorithms grouped according to the stage in a classification system where they are used.

1 https://github.com/albahnsen/CostSensitiveClassification
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The first set of methods that were proposed to deal with
cost-sensitivity consist in re-weighting the training examples based
on their costs, either by cost-proportionate rejection-sampling
(Zadrozny et al., 2003), or cost-proportionate over-sampling
(Elkan, 2001). The rejection-sampling approach consists in select-
ing a random subset by randomly selecting examples from a train-
ing set, and accepting each example with probability equal to the
normalized misclassification cost of the example. On the other
hand, the over-sampling method consists in creating a new set,
by making n copies of each example, where n is related to the nor-
malized misclassification cost of the example. Recently, we pro-
posed a direct cost approach to make the classification decision
based on the expected costs. This method is called Bayes minimum
risk (BMR), and has been successfully applied to detect credit card
fraud (Correa Bahnsen, Stojanovic, Aouada, & Ottersten, 2013;
Correa Bahnsen, Stojanovic, Aouada, & Ottersten, 2014). The
method consists in quantifying tradeoffs between various decisions
using probabilities and the costs that accompany such decisions.

Nevertheless, these methods still use a cost-insensitive algo-
rithm, and either by modifying the training set or the output prob-
abilities convert it into a cost-sensitive classifier. Therefore, leaving
opportunities to investigate the potential impact of algorithms that
take into account the real financial example-dependent costs dur-
ing the training of an algorithm.

The last way to introduce the costs into the algorithms is by
modifying the methods. The main objective of doing this, is to
make the algorithm take into account the example-dependent
costs during the training phase, instead of relying on a
pre-processing or post-processing method to make classifiers
cost-sensitive. In particular this has been done for decision trees
(Draper, Brodley, & Utgoff, 1994; Kretowski & Grześ, 2006; Ling,
Yang, Wang, & Zhang, 2004; Li, Li, & Yao, 2005; Ting, 2002;
Vadera, 2010). In general, the methods introduce the misclassifica-
tion costs into the construction of a decision trees by modifying the
impurity measure, and weight it with respect of the costs (Lomax &
Vadera, 2013). However, in all cases, approaches that have been
proposed only deal with the problem when the cost depends on
the class and not on the example.

In this paper we formalize a new measure in order to define
when a problem is cost-insensitive, class-dependent
cost-sensitive or example-dependent cost-sensitive. Moreover,
we go beyond the aforementioned state-of-the-art methods, and
propose a decision tree algorithm that includes the
example-dependent costs. Our approach is based first on a new
example-dependent cost-sensitive impurity measure, and sec-
ondly on a new pruning improvement measure which also
depends on the cost of each example.
We evaluate the proposed example-dependent cost-sensitive
decision tree using three different databases. In particular, a credit
card fraud detection, a credit scoring and a direct marketing data-
bases. The results show that the proposed method outperforms
state-of-the-art example-dependent cost-sensitive methods.
Furthermore, when compared against a standard decision tree,
our method builds significantly smaller trees in only a fifth of the
time. Furthermore, the source code used for the experiments is
publicly available as part of the CostSensitiveClassification1 library.

By taking into account the real financial costs of the different
real-world applications, our proposed example-dependent
cost-sensitive decision tree is a better choice for these and many
other applications. This is because, our algorithm is focusing on
solving the actual business problems, and not proxies as standard
classification models do. We foresee that our approach should
open the door to developing more business focused algorithms,
and that ultimately, the use of the actual financial costs during
training will become a common practice.

The remainder of the paper is organized as follows. In Section 2,
we explain the background behind example-dependent
cost-sensitive classification and we define a new formal definition
of cost-sensitive classification problems. In Section 3, we make an
extensive review of current decision tree methods, including by the
different impurity measures, growth methods, and pruning tech-
niques. In Section 4, we propose a new example-dependent
cost-sensitive decision tree. The experimental setup and the
different datasets are described in Section 5. Subsequently, the
proposed algorithm is evaluated on the different datasets. Finally,
conclusions of the paper are given in Section 7.
2. Cost-sensitive cost characteristic and evaluation measure

In this section we give the background behind
example-dependent cost-sensitive classification. First we present
the cost matrix, followed by a formal definition of cost-sensitive
problems. Afterwards, we present an evaluation measure based
on cost. Finally, we describe the most important state-of-the-art
methods, namely: Cost-proportionate sampling and Bayes mini-
mum risk.

2.1. Binary classification cost characteristic

In classification problems with two classes yi 2 f0;1g, the objec-
tive is to learn or predict to which class ci 2 f0;1g a given example i

http://https://github.com/albahnsen/CostSensitiveClassification


Table 1
Classification cost matrix.

Actual positive Actual negative
yi ¼ 1 yi ¼ 0

Predicted positive ci ¼ 1 CTPi
CFPi

Predicted negative ci ¼ 0 CFNi
CTNi

Table 2
Simplified cost matrix.

Negative C�FNi
¼ ðCFNi

�CTNi
Þ

ðCFPi
�CTNi

Þ

Positive C�TPi
¼ ðCTPi

�CTNi
Þ

ðCFPi
�CTNi

Þ
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belongs based on its k features Xi ¼ ½x1
i ; x

2
i ; . . . ; xk

i �. In this context,
classification costs can be represented using a 2 � 2 cost matrix
(Elkan, 2001), that introduces the costs associated with two types
of correct classification, true positives (CTPi

), true negatives (CTNi
),

and the two types of misclassification errors, false positives (CFPi
),

false negatives (CFNi
), as defined below: (see Tables 1 and 2).

Conceptually, the cost of correct classification should always be
lower than the cost of misclassification. These are referred to as the
‘‘reasonableness’’ conditions Elkan (2001), and are defined as
CFPi

> CTNi
and CFNi

> CTPi
. Taking into account the ‘‘reasonable-

ness’’ conditions, a simpler cost matrix with only one degree of
freedom has been defined in Elkan (2001), by scaling and shifting
the initial cost matrix, resulting in:

A classification problem is said to be cost-insensitive if costs of
both errors are equal. It is class-dependent cost-sensitive if the
costs are different but constant. Finally we talk about an
example-dependent cost-sensitive classification problem if the
cost matrix is not constant for all the examples.

However, the definition above is not general enough. There are
many cases when the cost matrix is not constant and still the prob-
lem is cost-insensitive or class-dependent cost-sensitive. For
example, if the costs of correct classification are zero,
CTPi
¼ CTNi

¼ 0, and the costs of misclassification are CFPi
¼ a0 � zi

and CFNi
¼ a1 � zi, where a0; a1, are constant and zi a random

variable. This is an example of a cost matrix that is not
constant. However, C�FNi

and C�TPi
are constant, i.e.

C�FNi
¼ ða1 � ziÞ=ða0 � ziÞ ¼ a1=a0 and C�TPi

¼ 0 8i. In this case the prob-
lem is cost-insensitive if a0 ¼ a1, or class-dependent cost-sensitive
if a0 – a1, even given the fact that the cost matrix is not constant.

Nevertheless, using only the simpler cost matrix is not enough
to define when a problem is example-dependent cost-sensitive.
To achieve this, we define the classification problem cost charac-
teristic as

bi ¼ C�FNi
� C�TPi

; ð1Þ

and define its mean and standard deviation as lb and rb,
respectively.

Using lb and rb, we analyze different binary classification prob-
lems. In the case of a cost-insensitive classification problem, for
every example i CFPi

¼ CFNi
and CTPi

¼ CTNi
, leading to bi ¼ 1 8i or

more generally lb ¼ 1 and rb ¼ 0. For class-dependent
cost-sensitive problems, the costs are not equal but constants
CFPi

– CFNi
or CTPi

– CTNi
, leading to bi – 1 8i, or lb – 1 and

rb ¼ 0. Lastly, in the case of example-dependent cost-sensitive
problems, the cost difference is non constant or rb – 0.

In summary a binary classification problem is defined according
to the following conditions:
lb
 rb
 Type of classification problem
1
 0
 cost-insensitive

–1
 0
 class-dependent cost-sensitive
–0
 example-dependent cost-sensitive
2.2. Example-dependent cost-sensitive evaluation measures

Common cost-insensitive evaluation measures such as misclas-
sification rate or F � Score, assume the same cost for the different
misclassification errors. Using these measures is not suitable for
example-dependent cost-sensitive binary classification problems.
Indeed, two classifiers with equal misclassification rate but differ-
ent numbers of false positives and false negatives do not have the
same impact on cost since CFPi

– CFNi
; therefore there is a need for a
measure that takes into account the actual costs
Ci ¼ ½CTPi

;CFPi
;CFNi

;CTNi
� of each example i, as introduced in the pre-

vious section.
Let S be a set of N examples i;N ¼j S j, where each example is

represented by the augmented feature vector Xa
i ¼ ½Xi;Ci� and

labeled using the class label yi 2 f0;1g. A classifier f which gener-
ates the predicted label ci for each element i is trained using the
set S. Then the cost of using f on S is calculated by

Costðf ðSÞÞ ¼
XN

i¼1

yiðciCTPi
þ ð1� ciÞCFNi

Þ
�

ð2Þ

þð1� yiÞðciCFPi
þ ð1� ciÞCTNi

Þ
�
: ð3Þ

Moreover, by evaluating the cost of classifying all
examples as the class with the lowest cost
CostlðSÞ ¼minfCostðf 0ðSÞÞ;Costðf 1ðSÞÞg where f 0 refers to a classi-
fier that predicts all the examples in S as belonging to the class
c0, and similarly f 1 predicts all the examples in S as belonging to
the class c1, the cost improvement can be expressed as the cost
savings as compared with CostlðSÞ.

Savingsðf ðSÞÞ ¼ CostlðSÞ � Costðf ðSÞÞ
CostlðSÞ

: ð4Þ
2.3. State-of-the-art example-dependent cost-sensitive methods

As mentioned earlier, taking into account the different costs
associated with each example, some methods have been proposed
to make classifiers example-dependent cost-sensitive. These meth-
ods may be grouped in two categories. Methods based on changing
the class distribution of the training data, which are known as
cost-proportionate sampling methods; and direct cost methods
(Wang, 2013).

A standard method to introduce example-dependent costs
into classification algorithms is to re-weight the training
examples based on their costs, either by cost-proportionate
rejection-sampling (Zadrozny et al., 2003), or over-sampling
(Elkan, 2001). The rejection-sampling approach consists in selecting
a random subset Sr by randomly selecting examples from S, and
accepting each example i with probability wi=max1;...;Nfwig, where
wi is defined as the expected misclassification error of example i:

wi ¼ yi � CFNi
þ ð1� yiÞ � CFPi

: ð5Þ

Lastly, the over-sampling method consists in creating a new set So,
by making wi copies of each example i. However, cost-proportionate
over-sampling increases the training since j So j�j S j, and it also
may result in over-fitting (Drummond & Holte, 2003).
Furthermore, none of these methods uses the full cost matrix but
only the misclassification costs.
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In a recent paper, we have proposed an example-dependent
cost-sensitive Bayes minimum risk (BMR) for credit card fraud
detection (Correa Bahnsen et al., 2014). The BMR classifier is a deci-
sion model based on quantifying tradeoffs between various deci-
sions using probabilities and the costs that accompany such
decisions (Jayanta, Mohan, & Tapas, 2006). This is done in a way
that for each example the expected losses are minimized. In what
follows, we consider the probability estimates pi as known, regard-
less of the algorithm used to calculate them.

The risk that accompanies each decision is calculated. In the
specific framework of binary classification, the risk of predicting
the example i as negative is Rðci ¼ 0 j XiÞ ¼ CTNi

ð1� p̂iÞ þ CFNi
� p̂i,

and Rðci ¼ 1 j XiÞ ¼ CTPi
� p̂i þ CFPi

ð1� p̂iÞ, is the risk when
predicting the example as positive, where p̂i is the estimated
positive probability for example i. Subsequently, if
Rðci ¼ 0 j XiÞ 6 Rðci ¼ 1 j XiÞ, then the example i is classified as neg-
ative. This means that the risk associated with the decision ci is
lower than the risk associated with classifying it as positive.
However, when using the output of a binary classifier as a basis
for decision making, there is a need for a probability that not only
separates well between positive and negative examples, but that
also assesses the real probability of the event (Cohen &
Goldszmidt, 2004).
3. Decision trees

Decision trees are one of the most widely used machine learn-
ing algorithms Maimon (2008). The technique is considered to be
white box, in the sense that is easy to interpret, and has a very
low computational cost, while maintaining a good performance
as compared with more complex techniques Hastie, Tibshirani,
and Friedman (2009). There are two types of decision tree depend-
ing on the objective of the model. They work either for classifica-
tion or regression. In this section we focus on binary
classification decision tree.

3.1. Construction of classification trees

Classification trees is one of the most common types of decision
tree, in which the objective is to find the Tree that best discriminates
between classes. In general the decision tree represents a set of split-
ting rules organized in levels in a flowchart structure. In the Tree,

each rule is shown as a node, and it is represented as ðX j; l jÞ, meaning

that the set S is split in two sets Sl and Sr according to X j and l j:

Sl ¼ fXa
i j X

a
i 2 S ^ x j

i 6 l jg and Sr ¼ fXa
i j X

a
i 2 S ^ x j

i > l jg; ð6Þ

where X j is the jth feature represented in the vector

X j ¼ ½x j
1; x

j
2; . . . ; x j

N� and l j is a value such that minðX jÞ 6 l j
< maxðX jÞ.

The Tree is constructed by testing all possible l j for each X j, and

picking the rule ðX j; l jÞ that maximizes a specific splitting criteria.
Then the training data is split according to the best rule, and for
each new subset the procedure is repeated, until one of the stop-
ping criteria is met. Afterwards, taking into account the number
of positive examples in each set S1 ¼ fXa

i j X
a
i 2 S ^ yi ¼ 1g, the per-

centage of positives p1 ¼j S1 j = j S j of each set is used to calculate
the impurity of each leaf using either the entropy
Ieðp1Þ ¼ �p1 logp1 � ð1� p1Þ logð1� p1Þ or the Gini
Igðp1Þ ¼ 2p1ð1� p1Þ measures. Finally the gain of the splitting cri-

teria using the rule ðX j; l jÞ is calculated as the impurity of S minus
the weighted impurity of each leaf:

GainðX j; l jÞ ¼ Iðp1Þ �
j Sl j
j S j Iðp

l
1Þ �

j Sr j
j S j Iðpr

1Þ; ð7Þ
where Iðp1Þ can be either of the impurity measures Ieðp1Þ or Igðp1Þ.
Subsequently, the gain of all possible splitting rules is calcu-

lated. The rule with maximal gain is selected

ðbestx; bestlÞ ¼ arg max
ðX j ;l jÞ

GainðX j; l jÞ; ð8Þ

and the set S is split into Sl and Sr according to that rule.
Furthermore, the process is iteratively repeated for each subset
until either there is no more possible splits or a stopping criteria
is met.

3.2. Pruning of a classification tree

After a decision tree has been fully grown, there is a risk for the
algorithm to over fit the training data. In order to solve this, prun-
ing techniques have been proposed in Breiman, Friedman, Stone,
and Olshen (1984). The overall objective of pruning is to eliminate
branches that are not contributing to the generalization accuracy
of the tree Rokach and Maimon (2010, chap. 9).

In general, pruning techniques start from a fully grown tree, and
recursively check if by eliminating a node there is an improvement
in the error or misclassification rate � of the Tree. The most com-
mon pruning technique is cost-complexity pruning, initially pro-
posed by Breiman Breiman et al. (1984). This method evaluates
iteratively if the removal of a node improves the error rate � of a
Tree in the set S, weighted by the difference of the number of
nodes.

PCcc ¼
�ðEBðTree;nodeÞ; SÞ � �ðTree; SÞ
j Tree j � j EBðTree;nodeÞ j ; ð9Þ

where EBðTree;nodeÞ is an auxiliary function that removes node
from Tree and returns a new Tree. At each iteration, the current
Tree is compared against all possible nodes.

4. Example-dependent cost-sensitive decision trees

Standard decision tree algorithms focus on inducing trees that
maximize accuracy. However this is not optimal when the misclas-
sification costs are unequal Elkan (2001).This has led to many stud-
ies that develop algorithms that aim to introduce the
cost-sensitivity into the algorithms Lomax and Vadera (2013).
These studies have focused on introducing the class-dependent
costs Draper et al. (1994), Ting (2002), Ling et al. (2004), Li et al.
(2005), Kretowski and Grześ (2006), Vadera (2010), which is not
optimal for some applications. For example in credit card fraud
detection, it is true that false positives have a different cost than
false negatives, nevertheless, false negatives may vary signifi-
cantly, which makes class-dependent cost-sensitive methods not
suitable for this problem.

In this section, we first propose a new method to introduce the
costs into the decision tree induction stage, by creating new-cost
based impurity measures. Afterwards, we propose a new pruning
method based on minimizing the cost as pruning criteria.

4.1. Cost-sensitive impurity measures

Standard impurity measures such as misclassification, entropy
or Gini, take into account the distribution of classes of each leaf
to evaluate the predictive power of a splitting rule, leading to an
impurity measure that is based on minimizing the misclassifica-
tion rate. However, as has been previously shown Correa
Bahnsen et al. (2013), minimizing misclassification does not lead
to the same results than minimizing cost. Instead, we are inter-
ested in measuring how good is a splitting rule in terms of cost
not only accuracy. For doing that, we propose a new



Table 3
Summary of the datasets.

Database Set Observations %Positives Cost

Credit scoring Total 112,915 6.74 83,740,181
Training 45,264 6.75 33,360,130
Under-sampled 6038 50.58 33,360,130
Rejection-sampled 5271 43.81 29,009,564
Over-sampled 66,123 36.16 296,515,655
Validation 33,919 6.68 24,786,997
Testing 33,732 6.81 25,593,055

Direct Marketing Total 37,931 12.62 59,507
Training 15,346 12.55 24,304
Under-sampled 3806 50.60 24,304
Rejection-sampled 1644 52.43 20,621
Over-sampled 22,625 40.69 207,978
Validation 11,354 12.30 16,154
Testing 11,231 13.04 19,048

Credit card Total 236,735 1.50 895,154
Fraud detection Training 94,599 1.51 358,078

Under-sampled 2828 50.42 358,078
Rejection-sampled 94,522 1.43 357,927
Over-sampled 189,115 1.46 716,006
Validation 70,910 1.53 274,910
Testing 71,226 1.45 262,167
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example-dependent cost based impurity measure that takes into
account the cost matrix of each example.

We define a new cost-based impurity measure taking into
account the costs when all the examples in a leaf are classified both
as negative using f 0 and positive using f 1

IcðSÞ ¼min Costðf 0ðSÞÞ;Costðf 1ðSÞÞf g: ð10Þ

The objective of this measure is to evaluate the lowest expected
cost of a splitting rule. Following the same logic, the classification
of each set is calculated as the prediction that leads to the lowest
cost

f ðSÞ ¼
0 if Costðf 0ðSÞÞ 6 Costðf 1ðSÞÞ
1 otherwise

�
ð11Þ

Finally, using the cost-based impurity, the splitting criteria cost

based gain of using the splitting rule ðX j; l jÞ is calculated with (7).

4.2. Cost-sensitive pruning

Most of the literature in class-dependent cost-sensitive decision
tree focuses on using the misclassification costs during the con-
struction of the algorithms Lomax and Vadera (2013). Only few
algorithms such as AUCSplit Ferri, Flach, and Hernández-Orallo
(2002) have included the costs both during and after the construc-
tion of the tree. However, this approach only used the
class-dependent costs, and not the example-dependent costs.

We propose a new example-dependent cost-based impurity
measure, by replacing the error rate � in (9) with the cost of using
the Tree on S i.e. by replacing with Costðf ðSÞÞ.

PCc ¼
Costðf ðSÞÞ � Costðf �ðSÞÞ
j Tree j � j EBðTree;nodeÞ j ; ð12Þ

where f � is the classifier of the tree without the selected node
EBðTree;nodeÞ.

Using the new pruning criteria, nodes of the tree that do not
contribute to the minimization of the cost will be pruned, regard-
less of the impact of those nodes on the accuracy of the algorithm.
This follows the same logic as in the proposed cost-based impurity
measure, since minimizing the misclassification is different than
minimizing the cost, and in several real-world applications the
objectives align with the cost not with the misclassification error.
5. Experimental setup

In this section we present the datasets used to evaluate the
example-dependent cost-sensitive decision tree algorithm CSDT
proposed in the Section 4. We used datasets from three different
real world example-dependent cost-sensitive problems: Credit
scoring, direct marketing and credit card fraud detection. For
each dataset we define a cost matrix, from which the algorithms
are trained. Additionally, we perform an under-sampling,
cost-proportionate rejection-sampling and cost-proportionate
over-sampling procedures. In Table 3, information about the differ-
ent datasets is shown.
5.1. Credit scoring

Credit scoring is a real-world problem in which the real costs
due to misclassification are not constant, but are
example-dependent. The objective in credit scoring is to classify
which potential customers are likely to default a contracted finan-
cial obligation based on the customer’s past financial experience,
and with that information decide whether to approve or decline
a loan Anderson (2007). This tool has become a standard practice
among financial institutions around the world in order to predict
and control their loan portfolios. When constructing credit scores,
it is a common practice to use standard cost-insensitive binary
classification algorithms such as logistic regression, neural net-
works, discriminant analysis, genetic programing, decision tree,
among others Correa Bahnsen and Gonzalez Montoya (2011),
Hand and Henley (1997), Ong, Huang, and Tzeng (2005), Yeh and
Lien (2009). However, in practice, the cost associated with approv-
ing a bad customer is quite different from the cost associated with
declining a good customer. Furthermore, the costs are not constant
among customers. This is because loans have different credit line
amounts, terms, and even interest rates.

For this paper we follow the example-dependent cost-sensitive
approach for credit scoring proposed in Correa Bahnsen, Aouada,
and Ottersten (2014b). In Table 4, the credit scoring cost matrix
is shown. First, the costs of a correct classification, CTPi

and CTNi
,

are zero for all customers, i. Then, CFNi
are the losses if the customer

i defaults, which is calculated as the credit line Cli time the loss
given default Lgd. The cost of a false positive per customer CFPi

is



Table 4
Credit scoring example-dependent cost matrix.

Actual positive Actual negative
yi ¼ 1 yi ¼ 0

Predicted positive ci ¼ 1 CTPi
¼ 0 CFPi

¼ ri þ Ca
FP

Predicted Negative ci ¼ 0 CFNi
¼ Cli � Lgd CTNi

¼ 0

Table 5
Direct marketing example-dependent cost matrix.

Actual positive Actual negative
yi ¼ 1 yi ¼ 0

Predicted positive ci ¼ 1 CTPi
¼ Ca CFPi

¼ Ca

Predicted negative ci ¼ 0 CFNi
¼ Inti CTNi

¼ 0

Table 6
Credit card fraud detection example-dependent cost matrix.

Actual positive Actual negative
yi ¼ 1 yi ¼ 0

Predicted positive ci ¼ 1 CTPi
¼ Ca CFPi

¼ Ca

Predicted negative ci ¼ 0 CFNi
¼ Amti CTNi

¼ 0
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defined as the sum of two real financial costs ri and Ca
FP , where ri is

the loss in profit by rejecting what would have been a good cus-
tomer. The second term Ca

FP , is related to the assumption that the
financial institution will not keep the money of the declined cus-
tomer idle it will instead give a loan to an alternative customer
(Nayak & Turvey, 1997). Since no further information is
known about the alternative customer, it is assumed to have an

average credit line Cl and an average profit r. Then,

Ca
FP ¼ �r � p0 þ Cl � Lgd � p1, in other words minus the profit of an

average alternative customer plus the expected loss, taking into
account that the alternative customer will pay his debt with a
probability equal to the prior negative rate, and similarly will
default with probability equal to the prior positive rate.

We apply the previous framework to a publicly available credit
scoring dataset. The dataset is the 2011 Kaggle competition Give
Me Some Credit,2 in which the objective is to identify those cus-
tomers of personal loans that will experience financial distress in
the next two years. The Kaggle Credit datasets contain information
regarding the features, and more importantly about the income of
each example, from which an estimated credit limit Cli can be calcu-
lated (see (Correa Bahnsen, Aouada, & Ottersten, 2014a)).

The dataset contains 112,915 examples, each one with 10 fea-
tures and the class label. The proportion of default or positive
examples is 6.74%. Since no specific information regarding the
datasets is provided, we assume that they belong to average
European financial institution. This enabled us to find the different
parameters needed to calculate the cost matrix. In particular we
used the same parameters as in (Correa Bahnsen et al., 2014a),
the interest rate intr to 4.79%, the cost of funds intcf to 2.94%, the
term l to 24 months, and the loss given default Lgd to 75%.

5.2. Direct marketing

In direct marketing the objective is to classify those customers
who are more likely to have a certain response to a marketing cam-
paign (Ngai, Xiu, & Chau, 2009). We used a direct marketing data-
set (Moro, Laureano, & Cortez, 2011) available on the UCI machine
learning repository (Bache & Lichman, 2013). The dataset contains
45,000 clients of a Portuguese bank who were contacted by phone
between March 2008 and October 2010 and received an offer to
open a long-term deposit account with attractive interest rates.
The dataset contains features such as age, job, marital status, edu-
cation, average yearly balance and current loan status and the label
indicating whether or not the client accepted the offer.

This problem is example-dependent cost sensitive, since there
are different costs of false positives and false negatives.
Specifically, in direct marketing, false positives have the cost of
contacting the client, and false negatives have the cost due to the
loss of income by failing to contact a client that otherwise would
have opened a long-term deposit.

We used the direct marketing example-dependent cost matrix
proposed in Correa Bahnsen et al. (2014). The cost matrix is shown
in Table 5, where Ca is the administrative cost of contacting the cli-
ent, as is credit card fraud, and Inti is the expected income when a
2 http://www.kaggle.com/c/GiveMeSomeCredit/
client opens a long-term deposit. This last term is defined as the
long-term deposit amount times the interest rate spread.

In order to estimate Inti, first the long-term deposit amount is
assumed to be a 20% of the average yearly balance, and lastly,
the interest rate spread is estimated to be 2.463333%, which is
the average between 2008 and 2010 of the retail banking sector
in Portugal as reported by the Portuguese central bank. Given that,
the Inti is equal to balance � 20%ð Þ � 2:463333%.

5.3. Credit card fraud detection

A credit card fraud detection algorithm, consisting on identify-
ing those transactions with a high probability of being fraud, based
on historical customers consumer and fraud patterns. Different
detection systems that are based on machine learning techniques
have been successfully used for this problem, in particular: neural
networks (Maes, Tuyls, Vanschoenwinkel, & Manderick, 2002),
Bayesian learning (Maes et al., 2002), hybrid models (Krivko,
2010), support vector machines (Bhattacharyya, Jha, Tharakunnel,
& Westland, 2011) and random forest (Correa Bahnsen et al., 2013).

Credit card fraud detection is by definition a cost sensitive prob-
lem, since the cost of failing to detect a fraud is significantly differ-
ent from the one when a false alert is made (Elkan, 2001). We used
the fraud detection example-dependent cost matrix proposed in
Correa Bahnsen et al. (2013). In Table 6, the cost matrix is pre-
sented. Where Amti is the amount of transaction i, and Ca is the
administrative cost of investigating a fraud alert. This cost matrix
differentiates between the costs of the different outcomes of the
classification algorithm, meaning that it differentiates between
false positives and false negatives, and also the different costs of
each example.

For this paper we used a dataset provided by a large European
card processing company. The dataset consists of fraudulent and
legitimate transactions made with credit and debit cards between
January 2012 and June 2013. The total dataset contains
120,000,000 individual transactions, each one with 27 attributes,
including a fraud label indicating whenever a transaction is identi-
fied as fraud. This label was created internally in the card process-
ing company, and can be regarded as highly accurate. In the
dataset only 40,000 transactions were labeled as fraud, leading to
a fraud ratio of 0.025%.

From the initial attributes, an additional 260 attributes are
derived using the methodology proposed in Bhattacharyya et al.
(2011), Whitrow, Hand, Juszczak, Weston, and Adams (2008) and
Correa Bahnsen et al. (2013). The idea behind the derived attri-
butes consists in using a transaction aggregation strategy in order
to capture consumer spending behavior in the recent past. The
derivation of the attributes consists in grouping the transactions
made during the last given number of hours, first by card or

http://www.kaggle.com/c/GiveMeSomeCredit/


Fig. 2. Results of the DT and the CSDT. For both algorithms, the results are calculated with and without both types of pruning criteria. There is a clear difference between the
savings of the DT and the CSDT algorithms. However, this difference is not observable on the F1Score results. Since the CSDT is focused on maximizing the savings not the
accuracy or F1Score. There is a small increase in savings when using the DT with cost-sensitive pruning. Nevertheless, in the case of the CSDT algorithm, there is no change
when using any pruning procedure, neither in savings or F1Score.

Table 7
Results on the three datasets of the cost-sensitive and standard decision tree, without pruning (notp), with error based pruning (errp), and with cost-sensitive pruning technique
(costp). Estimated using the different training sets: training, under-sampling, cost-proportionate rejection-sampling and cost-proportionate over-sampling.

Set Algorithm Fraud detection Direct marketing Credit scoring

%Sav %Accu F1Score %Sav %Accu F1Score %Sav %Accu F1Score

t DTnotp 31.76 98.76 0.4458 19.11 88.24 0.2976 18.95 93.42 0.3062
DTerrp 31.76 98.76 0.4458 19.70 88.28 0.3147 18.95 93.42 0.3062
DTcostp 35.89 98.71 0.4590 28.08 88.28 0.3503 27.59 93.41 0.3743
CSDTnotp 70.85 95.07 0.2529 69.00 85.51 0.2920 49.28 93.19 0.3669
CSDTerrp 70.85 95.07 0.2529 68.97 88.18 0.3193 48.85 93.19 0.3669
CSDTcostp 71.16 94.98 0.2522 69.10 81.75 0.2878 49.39 90.28 0.3684

u DTnotp 52.39 85.52 0.1502 49.80 70.80 0.3374 48.91 75.96 0.2983
DTerrp 52.39 85.52 0.1502 49.80 70.80 0.3374 48.91 75.96 0.2983
DTcostp 70.26 92.67 0.2333 53.20 74.51 0.3565 49.77 79.37 0.3286
CSDTnotp 12.46 69.34 0.0761 64.21 52.34 0.2830 30.68 93.19 0.2061
CSDTerrp 14.98 70.31 0.0741 66.21 60.06 0.2822 41.49 93.19 0.2564
CSDTcostp 15.01 70.31 0.0743 68.07 62.11 0.2649 44.89 78.08 0.2881

r DTnotp 34.39 98.70 0.4321 68.59 72.73 0.3135 48.97 87.07 0.3931
DTerrp 34.39 98.70 0.4321 68.79 73.39 0.3196 48.97 87.07 0.3931
DTcostp 38.99 98.64 0.4478 69.27 72.58 0.3274 50.48 82.69 0.3501
CSDTnotp 70.85 95.07 0.2529 66.87 57.91 0.2761 31.25 93.19 0.1940
CSDTerrp 70.85 95.07 0.2529 67.47 63.31 0.2581 40.69 93.19 0.2529
CSDTcostp 71.09 94.94 0.2515 68.08 62.60 0.2642 44.51 77.82 0.2869

o DTnotp 31.72 98.77 0.4495 60.30 79.46 0.3674 47.39 88.28 0.3994
DTerrp 31.72 98.77 0.4495 60.30 79.46 0.3674 47.39 88.28 0.3994
DTcostp 37.35 98.68 0.4575 69.44 70.07 0.3108 50.92 87.52 0.3977
CSDTnotp 70.84 95.06 0.2529 68.75 64.72 0.2935 41.37 93.19 0.2205
CSDTerrp 70.84 95.06 0.2529 68.75 64.72 0.2935 41.38 90.63 0.3457
CSDTcostp 71.09 94.94 0.2515 68.75 64.72 0.2935 41.65 78.26 0.2896
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account number, then by transaction type, merchant group, coun-
try or other, followed by calculating the number of transactions or
the total amount spent on those transactions.

For the experiments, a smaller subset of transactions with
a higher fraud ratio, corresponding to a specific group of
transactions, is selected. This dataset contains 236,735 transac-
tions and a fraud ratio of 1.50%. In this dataset, the total
financial losses due to fraud are 895,154 Euros. This dataset
was selected because it is the one where most frauds are
being made.



Fig. 3. Average savings on the three datasets of the different cost-sensitive and standard decision tree, estimated using the different training sets: training, under-sampling,
cost-proportionate rejection-sampling and cost-proportionate over-sampling. The best results are found when using the training set. When using the under-sampling set
there is a decrease in savings of the algorithm. Lastly, in the case of the cost-proportionate sampling sets, there is a small increase in savings when using the CSDT algorithm.

Table 8
Training time and tree size of the different cost-sensitive and standard decision tree,
estimated using the different training sets: training, under-sampling, cost-propor-
tionate rejection-sampling and cost-proportionate over-sampling, for the three
databases.

Set Algorithm Fraud
detection

Direct
marketing

Credit scoring

j Tree j Time j Tree j Time j Tree j Time

t DTnotp 488 2.45 298 1.58 292 1.58
DTerrp 488 3.90 298 2.13 292 2.13
DTcostp 446 19.19 291 5.23 280 5.23
CSDTnotp 89 1.47 51 0.40 69 0.40
CSDTerrp 88 1.87 51 0.64 69 0.64
CSDTcostp 89 1.74 51 0.45 69 0.45

u DTnotp 308 1.10 198 1.00 167 1.00
DTerrp 308 1.43 198 1.14 167 1.14
DTcostp 153 2.59 190 1.34 142 1.34
CSDTnotp 14 0.20 23 0.17 42 0.17
CSDTerrp 14 0.23 23 0.19 42 0.19
CSDTcostp 14 0.24 23 0.18 42 0.18

r DTnotp 268 0.98 181 0.90 267 0.90
DTerrp 268 1.24 181 0.95 267 0.95
DTcostp 153 2.48 162 1.20 261 1.20
CSDTnotp 18 0.22 10 0.07 70 0.07
CSDTerrp 18 0.23 10 0.07 70 0.07
CSDTcostp 18 0.23 10 0.07 70 0.07

o DTnotp 425 2.30 340 1.80 277 1.80
DTerrp 425 3.98 340 2.65 277 2.65
DTcostp 364 10.15 288 5.99 273 5.99
CSDTnotp 37 1.58 51 0.38 70 0.38
CSDTerrp 37 1.90 51 0.45 70 0.45
CSDTcostp 37 1.98 51 0.42 70 0.42
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6. Results

In this section we present the experimental results. First, we
evaluate the performance of the proposed CSDT algorithm and
compare it against a classical decision tree (DT). We evaluate the
different trees using them without pruning (notp), with error based
pruning (errp), and also with the proposed cost-sensitive pruning
technique (costp). The different algorithms are trained using the
training (t), under-sampling (u), cost-proportionate
rejection-sampling (r), and cost-proportionate over-sampling (o)
datasets. Lastly, we compare our proposed method versus
state-of-the-art example-dependent cost-sensitive techniques.
6.1. Results CSDT

We evaluate a decision tree constructed using the Gini impurity
measure, with and without the pruning defined in (9). We also
apply the cost-based pruning procedure given in (12). Lastly, we
compared against the proposed CSDT constructed using the
cost-based impurity measure defined in (10), using the two prun-
ing procedures.

In Fig. 2, the results using the three databases are shown. In par-
ticular we first evaluate the impact of the algorithms when trained
using the training set. There is a clear difference between the sav-
ings of the DT and the CSDT algorithms. However, that difference is
not observable on the F1Score results. Since the CSDT is focused on
maximizing the savings not the accuracy or F1Score. There is a
small increase in savings when using the DT with cost-sensitive
pruning. Nevertheless, in the case of the CSDT algorithm, there is
no change when using any pruning procedure, neither in savings
or F1Score.

In addition, we also evaluate the algorithms on the different
sets, under-sampling, rejection-sampling and over-sampling. The
results are shown in Table 7. Moreover, in Fig. 3, the average
results of the different algorithms measured by savings is shown.
The best results are found when using the training set. When using
the under-sampling set there is a decrease in savings of the CSDT
algorithm. Lastly, in the case of the cost-proportionate sampling
sets, there is a small increase in savings when using the CSDT
algorithm.

Finally, we also analyze the different models taking into
account the complexity and the training time. In particular we
evaluate the size of each Tree. In Table 8, and Fig. 4, the results
are shown. The CSDT algorithm creates significantly smaller trees,
which leads to a lower training time. In particular this is a result
of using the non weighted gain, the CSDT only accepts splitting
rules that contribute to the overall reduction of the cost, which is
not the case if instead the weighted gain was used. Even that the
DT with cost pruning, produce a good result measured by savings,
it is the one that takes the longer to estimate. Since the algorithm
first creates a big decision tree using the Gini impurity, and then
attempt to find a smaller tree taking into account the cost.
Measured by training time, the CSDT is by all means faster to train
than the DT algorithm, leading to an algorithm that not only gives
better results measured by savings but also one that can be trained
much quicker than the standard DT.
6.2. Comparison with state-of-the-art methods

Additionally to the comparison of the CSDT and a DT, we
also evaluate and compare our proposed method with the
standard example-dependent cost-sensitive methods, namely,
cost-proportionate rejection-sampling (Zadrozny et al., 2003),
cost-proportionate over-sampling (Elkan, 2001) and Bayes mini-
mum risk (BMR) (Correa Bahnsen et al., 2014).



Fig. 4. Average tree size (a) and training time (b), of the different cost-sensitive and standard decision tree, estimated using the different training sets: training, under-
sampling, cost-proportionate rejection-sampling and cost-proportionate over-sampling, for the three databases. The CSDT algorithm create significantly smaller trees, which
leads to a lower training time.

Table 9
Results on the three datasets of the decision tree, logistic regression and random forest algorithms, estimated using the different training sets: training, under-sampling, cost-
proportionate rejection-sampling and cost-proportionate over-sampling.

Set Algorithm Fraud detection Direct marketing Credit scoring

%Sav %Accu F1Score %Sav %Accu F1Score %Sav %Accu F1Score

t DT 31.76 98.76 0.4458 19.70 88.28 0.3147 18.95 93.42 0.3062
DT � BMR 60.45 65.05 0.2139 69.27 63.09 0.2416 33.25 79.06 0.2450
LR 0.92 99.75 0.1531 14.99 88.25 0.2462 3.28 93.47 0.0811
LR� BMR 45.52 66.42 0.1384 68.46 70.73 0.2470 29.55 80.86 0.2883
RF 33.42 76.33 0.2061 20.10 86.94 0.2671 15.38 93.57 0.2720
RF � BMR 64.14 62.85 0.2052 67.30 69.07 0.3262 47.89 81.54 0.2698

u DT 52.39 85.52 0.1502 49.80 70.80 0.3374 48.91 75.96 0.2983
LR 12.43 73.08 0.0241 49.60 73.32 0.3396 45.38 85.40 0.3618
RF 56.84 54.48 0.0359 41.64 67.14 0.3069 49.53 79.02 0.3215

r DT 34.39 98.70 0.4321 68.79 73.39 0.3196 48.97 87.07 0.3931
LR 30.77 76.02 0.1846 62.85 72.63 0.3313 48.80 84.69 0.3660
RF 38.12 75.03 0.2171 61.45 66.06 0.2949 47.34 81.47 0.3284

o DT 31.72 98.77 0.4495 60.30 79.46 0.3674 47.39 88.28 0.3994
LR 27.93 76.79 0.1776 55.63 81.65 0.3540 34.05 91.55 0.3923
RF 36.12 75.62 0.2129 22.80 85.52 0.2871 21.72 93.22 0.3301

Fig. 5. Comparison of the different models on the three databases. Measured by savings, CSDT is the overall best method. However, by F1Score, there is not a clear trend
regarding the different results.
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Using each database and each set, we estimate three different
algorithms, in particular a decision tree (DT), a logistic regression
(LR) and a random forest (RF). The LR and RF algorithms were
trained using the implementations of Scikit-learn Pedregosa et al.
(2011), respectively. We only used the BMR algorithm using the
training set, as it has been previously shown that it is where the
model gives the best results (Correa Bahnsen et al., 2013).

The results are shown on Table 9. Measured by savings, it is
observed that regardless of the algorithm used for estimating the
positive probabilities, in all cases there is an increase in savings
by using BMR. In general, for all datasets the best results are found
when using a random forest algorithm for estimating the positive
probabilities. In the case of the direct marketing dataset, the results
of the different algorithms are very similar. Nevertheless, in all
cases the BMR produce higher savings. When analyzing the
F1Score, it is observed that in general there is no increase in results
when using the BMR. It is observed that the best models selected
by savings are not the same as the best ones measured by
F1Score. And the reason for that, is because the F1Score treat the
false positives and the false negatives as equal, which as discussed
before is not the case in example-dependent cost-sensitive
problems.

Finally, we compare the results of the standard algorithms, the
algorithms trained using the cost-proportionate sampling sets, the
BMR, and the CSDT. Results are shown in Fig. 5. When comparing
by savings, for all databases the best model is the CSDT, closely fol-
low by the DT with cost-based pruning. It is interesting to see that
both algorithms that the algorithms that incorporates the costs
during construction, BMR and CSDT, gives the best results when
trained using the training set. When measured by F1Score, there
is not a clear trend regarding the different results. In the case of
fraud detection the best model is the DT, however measure by sav-
ings that model performs poorly. In the case of direct marketing, by
F1Score;DT with cost pruning performs the best, but that model is
the second worst by savings. In the credit scoring dataset the best
model is the same when measured by savings or F1Score.
7. Conclusions and future work

Several real-world business applications of classification mod-
els are example-dependent cost-sensitive, in the sense that the
objective of using an algorithm is related to maximizing the profit
of the company. Moreover, the different costs due to misclassifica-
tion vary among examples. In this paper, we focus on three differ-
ent applications: credit card fraud detection, credit scoring and
direct marketing. In all cases, evaluating a classification algorithm
using traditional statistics such as misclassification rate or F1Score,
do not accurately represent the business oriented goals.

State-of-the-art example-dependent cost-sensitive techniques
only introduce the cost to the algorithm, either before or after
training, therefore, leaving opportunities to investigate the poten-
tial impact of algorithms that take into account the real financial
example-dependent costs during an algorithm training. In this
paper, we proposed a new example-dependent cost-sensitive
decision tree algorithm, by incorporating the different
example-dependent costs into a new cost-based impurity measure
and a new cost-based pruning criteria. We show the importance of
including the costs during the algorithm construction, both by
using a classical decision tree and then the cost-based pruning pro-
cedure, and by fully creating a decision tree taking into account the
costs per example.

Our proposed algorithm maintains the simplicity and inter-
pretability of decision trees, therefore, the resulting tree is easy
to analyze and to obtain straightforward explanations of the deci-
sions made by the algorithm. This is a highly desirable feature,
since in real-world applications, it is important to explain the
rationale behind the models decisions. Moreover, when comparing
the results of the proposed method and state-of-the-art algo-
rithms, we found that in all cases our method provides the best
performance measured by savings.

Furthermore, when comparing our method with standard deci-
sion trees in terms of complexity and training time, our proposed
algorithm creates significantly smaller trees in a fraction of the
time. This, is an interesting result, as simpler trees are found to
perform better when maximizing the savings than when maximiz-
ing standard impurity measures. However, this may cause our
algorithm to struggle with high cost outliers, as they may be
ignored by the method. Also, individual decision trees typically
suffer from high variance.

To overcome the algorithm’s limitations, a future research
should be focused on evaluating the algorithm in a bagging frame-
work, specifically, by learning different example-dependent
cost-sensitive decision trees on random subsets of the training
set, and then combining them in order to produce a more robust
result. This approach, should take care of most outliers and should
arise to better results, as it has been proved to do with standard
decision trees, i.e. random forest. Moreover, we are aware that
drawing conclusions from only three databases is not ideal.
Future work should include focusing efforts on finding more
example-dependent cost-sensitive databases. Lastly, it is worth
investigating the combination of traditional impurity measures
and the proposed cost-sensitive impurity measure, as a measure
that takes both the information gain and the savings gain may pro-
duce good results.
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