Benefits of Anomaly Detection Using Isolation Forests

Benefits of Anomaly Detection Using Isolation Forests

4 One of the newest techniques to detect anomalies is called Isolation Forests. The algorithm is based on the fact that anomalies are data points that are few and different. As a result of these properties, anomalies are susceptible to a mechanism called isolation.

This method is highly useful and is fundamentally different from all existing methods. It introduces the use of isolation as a more effective and efficient means to detect anomalies than the commonly used basic distance and density measures. Moreover, this method is an algorithm with a low linear time complexity and a small memory requirement. It builds a good performing model with a small number of trees using small sub-samples of fixed size, regardless of the size of a data set. [Read More]