Machine Learning Algorithms – Naive Bayes Classifier

A Naive Bayes Classifier is a supervised machine-learning algorithm that uses the Bayes’ Theorem, which assumes that features are statistically independent. The theorem relies on the naive assumption that input variables are independent of each other, i.e. there is no way to know anything about other variables when given an additional variable. Regardless of this assumption, it... Continue Reading →

Machine Learning Algorithms – K-Means Clustering

  Previously in this series, we have looked at decision trees and random forests, two types of supervised learning algorithms. Supervised algorithms are trained with data that provides input vectors as well as their corresponding target vectors, or the output that is expected after the data is processed. Unsupervised models, on the other hand, are trained using data... Continue Reading →

Building AI Applications Using Deep Learning

Recently, we have seen a huge boom around the field of deep learning; it is currently being implemented in a wide variety of fields, from driverless cars to product recommendation. In their most primitive form, deep learning algorithms originated in the 1960s. If the concept has been around for decades, why is it that widespread... Continue Reading →

Up ↑